
Research, Review and Studies
International Journal for Multidisciplinary

IJMRRS



A Comprehensive Conformable Mathematical Model of
Monkeypox Transmission: Stability, Sensitivity, and the Impact of

Vaccination on Human Birth Rate

Syeda Alishwa Zaniba∗, Rimsha Tariqa, Ibtisaam Alia
a Department of Mathematics, Riphah International University, Main Satyana Road, Faisalabad 44000,

Pakistan.
∗Correspondence: rimshat536@gmail.com

Abstract

In this study, we develop a deterministic mathematical model to capture the transmission dynamics of the
monkeypox virus, incorporating vaccination through a system of differential equations. The model accounts
for all key interactions driving the virus’s spread across both human and rodent populations. In the human
population, the compartments include SH (susceptible), EH (exposed), IH (infected), CH (confirmed cases),
VH (vaccinated), and RH (recovered). For rodents, the compartments are SM (susceptible), EM (exposed),
and IM (infected). Additionally, we explore the system’s fractional-order behavior using fractional-order
differential equations for values of σ = 0.2, 0.4, 0.6, 0.8, 1. This stability analysis demonstrates that the
disease-free equilibrium is stable when the basic reproduction number R0 < 1 and unstable when R0 > 1.
Sensitivity analysis identifies the critical parameters influencing transmission, with ϕH (human contact rate),
ρ (fraction of vaccinated immigrants), and ϕM (rodent contact rate) as the most influential factors. Further-
more, we examine the local and global stability of equilibrium points and conduct numerical simulations.
We also analyze the effect of vaccination on the birth rate rho, assessing how vaccination coverage influences
population growth and its impact on disease dynamics. The results underscore the importance of enhanc-
ing vaccination and isolation strategies to lower the virus’s reproduction rate and potentially eliminate the
disease.

Keywords: Mathematical model, Differential equations, Monkeypox disease, Stability analysis, Vaccina-
tion.
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1 Introduction

A disease called monkeypox can affect both people and animals. It belongs to the family of orthopoxviruses,
which infect humans and are present in cows. The infectious disease mpox can result in a severe rash,
fever, swollen lymph nodes, headaches, back discomfort, muscular aches, and low energy shown in Figure
1. Though most recover totally, some people become seriously ill [1]. The monkeypox virus (MPXV) is
the cause of mpox. It is an enclosed double-stranded DNA virus belonging to the family Poxviridae, which
also contains the viruses vaccinia, cowpox, variola, and others. It is classified as the Orthopoxvirus genus.
Clade I, which includes subclades Ia and Ib, and clade II, which includes subclades IIa and IIb, are the two
separate clades of the virus [2].

Figure 1: Monkeypox Disease

The most serious orthopoxvirus infection since smallpox eradication has been shown to be the monkeypox
virus. Since May 2022, there have been over 15,000 confirmed cases of monkeypox from every continent other
than Antarctica. Monkeypox was discovered in the 1950s. It was endemic in several regions of western and
central Africa prior to this epidemic, and contact with infected animals was usually the cause human illness.
The current outbreak is unique in that it is spreading from person to person and has a worldwide reach.
Though researchers are still figuring out why this is occurring, several theories include virus mutations, a
decline in the smallpox vaccine’s use, and changes in behavior [3–5]. Monkeypox can be prevented by a
smallpox vaccination, but as smallpox has been eradicated globally, its application is presently limited to
clinical studies. Prevention requires limiting human-to-human transmission and minimizing human-animal
interaction with infected animals [6]. In order to manage the monkeypox outbreak, it is essential to identify
new cases quickly and to monitor and prevent unprotected contact with wild animals, especially those that
are sick or dead [7]. In order to forecast future outbreaks of the disease and to extrapolate from current
data regarding the state and progression of an outbreak, many researchers now use mathematical models as
a suitable and successful strategy. The study of fluid dynamics is essential to understanding fluid flow in the
human body, and mathematical biology places a lot of emphasis on blood flow modeling [8–10]. Peter at al
(2022) This paper develops a mathematical model of monkeypox using classical and fractional differential
equations. It examines stability when R0 < 1 and fits the model to 2019 Nigerian cases. Simulations ex-
plore infection dynamics and control policies, highlighting key parameters for eradicating monkeypox [11].
Ashezua & Kaduna (2023)In order to examine how public knowledge, treatment, and immunization impact
monkeypox control, this study develops a model. It identifies stable circumstances for both endemic and
disease-free states and emphasizes important elements like vaccination rates and transmission rates. Increas-
ing immunization rates and raising awareness can help stop the spread of monkeypox [12]. Okongo at al
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(2024) In modeling the transmission of monkeypox in humans and animals, this study denotes disease-free
and endemic regions. The reproduction number, R0, provides the stability. Stemming the monkeypox virus
will require managing interactions and prioritizing early diagnosis and treatment [13].
After reviewing the literature, we observe that vaccination is critically important for humans, especially in
the presence of clinically ill individuals. Our analysis reveals several gaps in the existing research, particularly
concerning the vaccination status of different populations. Notably, we find that immigrants are often vac-
cinated, while other groups remain unvaccinated, thereby categorizing them as part of the susceptible class.
This discrepancy underscores the need for targeted vaccination strategies to protect vulnerable populations
and control disease spread effectively. Section 2: Transmission model of monkeypox with the vaccine will
be examined. We also apply the conformable fractional-order behavior of model. The modified model’s
reproduction number, local and global stabilities, and monkeypox-free equilibrium point will be examined.
Section 3: There will be a presentation of the mathematical modeling’s results and discussion related to
the dynamic interaction. Section 5: Conclusion will be discussed in this section.

2 Model formulation

The construct a deterministic mathematical model for the transmission of the monkeypox virus, based on
vaccination discussed in this section. The model accounts for interactions between the human and rodent
populations. We divide the system into nine compartments: six representing different human groups and
three representing the rodent population.
The susceptible human population increases through recruitment via birth or immigration, represented by
αH . It decreases due to the per capita natural death rate βH and the force of infection ϕH and ν1 is the
susceptible person whose take vaccinate. Thus, the rate of susceptible humans changes can be written as:

dSH

dt
= αH (1− ρ) + ν1VH − (EH ϕH + βH + ν2)SH , (2.1)

The number of exposed humans is governed by the force of infection ϕH . It decreases at a rate ηH , which
represents the transition to becoming infectious, as well as the per capita natural death rate βH . Therefore,
the rate of change in the number of exposed humans is given by:

dEH

dt
= ϕHSH EH − (ηH + βH)EH (2.2)

The rate at which the proportion of infected persons rises is ηHEH , denoting the change from the exposed
to the infectious stage. The decline in this rate can be related to several factors, including the natural death
rate βH , disease-induced death rate ω1, recovery rate, and the shift to clinically unwell persons at the rate
δ. As a result, the pace at which the population of infectious people is changing is:

dIH
dt

= ηHEH − (γ + δ +ϖ1 + βH) IH (2.3)

When people in need of medical care exit the infectious compartment at a rate of γ, the number of clinically
unwell humans rises. These people transition at a pace of ξ to the recovery stage. Because of the natural
mortality rate βH and the disease-induced death rate ω2, the number of clinically unwell persons reduces.
Thus, the following formula provides the rate of change in the population of clinically unwell humans:

dCH

dt
= γ IH − (ξ +ϖ2 + βH)CH (2.4)

A fraction ρ of immigrants are vaccinated, whereas the remaining 1− ρ are not vaccinated and are therefore
classified as susceptible. where θ is the rate at which recovered individuals receive vaccination, and ν2
represents the rate at which vaccinated individuals can become susceptible.

dVH

dt
= ραH + ν2SH + θRH − (ν1 + βH)VH (2.5)

3



As people transition at the rate δ from the clinically unwell compartment to the recovered compartment,
the number of recovered persons increases. Then, as a result of immunity loss at a rate of θH and natural
mortality at a rate of βH , this population declines. As a result, the restored human population is changing
at the following rate:

dRH

dt
= δ IH − (θ + βH)RH (2.6)

A steady birth rate αM leads to recruitment of more vulnerable rodents. Through interaction with diseased
rodents, represented by ϕM , they get the infection. The natural death rate βM causes the population to
decline. Consequently, the vulnerable rodent population’s rate of change is:

dSM

dt
= αM − (EM ϕM + βM )SM (2.7)

The force of infection ϕM causes an increase in the number of exposed rodents. Together with the natural
death rate βM , it declines at the rate ηM , which denotes the change to the infectious class. Consequently,
the number of exposed rodents is changing at the following rate:

dEM

dt
= ϕMSM EM − (ηM + βM )EM (2.8)

The number of infectious rodents increases as exposed rodents transition to the infectious state at the rate
ηM . It decreases due to the natural death rate βM . Therefore, the rate of change in the population of
infectious rodents is:

dIM
dr

= ηMEM − βM IM (2.9)

thus the whole system is as following and schematic diagram show in Figure 2:

dSH

dt
= αH (1− ρ) + ν1VH − (EH ϕH + βH + ν2)SH ,

dEH

dt
= ϕHSH EH − (ηH + βH)EH

dIH
dt

= ηHEH − (γ + δ +ϖ1 + βH) IH

dCH

dt
= γ IH − (ξ +ϖ2 + βH)CH

dVH

dt
= ραH + ν2SH + θRH − (ν1 + βH)VH

dRH

dt
= δ IH − (θ + βH)RH

dSM

dt
= αM − (EM ϕM + βM )SM

dEM

dt
= ϕMSM EM − (ηM + βM )EM

dIM
dt

= ηMEM − βM IM

(2.10)

with initial conditions

SH > 0, EH > 0, IH > 0, CH > 0, VH > 0, RH > 0, SM > 0, EM > 0, IM > 0. (2.11)
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Figure 2: Monkeypox virus Schematic diagram

2.1 Positivity of the solution

Suppose that,

(SH(0), EH(0), VH(0), IH(0), CH(0), RH(0)) = (S0
H , E0

H , V 0
H , I0H , C0

H , R0
H)

be the initial value. and let
(SM (0), EM (0), IM (0)) = (S0

M , E0
M , I0M )

represent the state variables’ starting values. It follows that

(SH(t), EH(t), VH(t), IH(t), CH(t), RH(t), SM (t), EM (t), IM (t))

are positive for every time t > 0 if S0
M , E0

M , I0M , C0
M , V 0

H , R0
H , and S0

R are positive. Moreover,

lim
t→∞

supNH(t) ≤ αH

βH
and lim

t→∞
supNM (t) ≤ αM

βM
.

Also, if N0
H ≤ αH

βH
≤ Nh, then NH ≤ αH

βH
and also, if N0

M ≤ αM

βM
≤ NM , then NH ≤ αH

βH

Then, the differential equations have the feasible domain which is given by,

ΩNH
=

{
(SH , EH , VH , IH , CM , RH) ⊂ R+6 : SH + EH + VH + IH + CH +RH ≤ αH

βH

}
(2.12)

ΩNM
=

{
(SM , EM , IM ) ⊂ R+3 : SM + EM + IM ≤ αM

βM

}
(2.13)

such that
Ω = ΩNH

× ΩNM
⊂ R+6 × R+3 (2.14)

A new definition of fractional derivatives has been proposed by Khalil et al. in [14] and goes as follows:
Definition Supposed that,

H : (0,∞) → R (2.15)
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then the following is the definition of the conformable derivative of H (with order σ):

Bσ(H)(t) = lim
ζ→0

H(t+ ζt1−σ)−H(t)

ζ
∀t > 0, σ ∈ (0, 1] (2.16)

A few properties (listed in [14]) are also satisfied by the given definition. Here is one of such attributes:

Assuming that H is differentiable,

Bσ(H)(t) = t1−σ dH

dt
(2.17)

Using the previously described Khalil eta al [14] conformable derivative , let’s reconstruct the model (2.10)
as follows. 

Bσ(SH)(t) = αH (1− ρ) + ν1VH − (EH ϕH + βH + ν2)SH ,

Bσ(EH)(t) = ϕHSH EH − (ηH + βH)EH

Bσ(IH)(t) = ηHEH − (γ + δ +ϖ1 + βH) IH

Bσ(CH)(t) = γ IH − (ξ +ϖ2 + βH)CH

Bσ(VH)(t) = ραH + ν2SH + θRH − (ν1 + βH)VH

Bσ(RH)(t) = δ IH − (θ + βH)RH

Bσ(SM )(t) = αM − (EM ϕM + βM )SM

Bσ(EM )(t) = ϕMSM EM − (ηM + βM )EM

Bσ(IM )(t) = ηMEM − βM IM

(2.18)

The operator Bσ in the previously mentioned model, Eqs. (2.22), represents the conformable derivative of
the function, with the derivative’s order being (σ = (0, 1] Now, Eq. (2.17) may be used to convert Eqs.
(2.22) as follows: 

t1−σ dSH

dt
= αH (1− ρ) + ν1VH − (EH ϕH + βH + ν2)SH ,

t1−σ dEH

dt
= ϕHSS EH − (ηH + βH)EH

t1−σ dIH
dt

= ηHEH − (γ + δ +ϖ1 + βH) IH

t1−σ dCH

dt
= γ IH − (ξ +ϖ2 + βH)CH

t1−σ dVH

dt
= ραH + ν2SH + θRH − (ν1 + βH)VH

t1−σ dRH

dt
= δ IH − (θ + βH)RH

t1−σ dSM

dt
= αM − (EM ϕM + βM )SM

t1−σ dEM

dt
= ϕMSM EM − (ηM + βM )EM

t1−σ dIM
dt

= ηMEM − βM IM

(2.19)

Simplifying the previously mentioned gives us the system’s final form, which is as follows: with initial
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conditions 

dSH

dt
= tσ−1 (αH (1− ρ) + ν1VH − (EH ϕH + βH + ν2)SH ) ,

dEH

dt
= tσ−1 (ϕHSH EH − (ηH + βH)EH )

dIH
dt

= tσ−1 (ηHEH − (γ + δ +ϖ1 + βH) IH )

dCH

dt
= tσ−1 (γ IH − (ξ +ϖ2 + βH)CH )

dVH

dt
= tσ−1 (ραH + ν2SH + θRH − (ν1 + βH)VH )

dRH

dt
= tσ−1 (δ IH − (θ + βH)RH )

dSM

dt
= tσ−1 (αM − (EM ϕM + βM )SM )

dEM

dt
= tσ−1 (ϕMSM EM − (ηM + βM )EM )

dIM
dt

= tσ−1 (ηMEM − βM IM )

(2.20)

SH > 0, EH > 0, IH > 0, CH > 0, VH > 0, RH > 0, SM > 0, EM > 0, IM > 0. (2.21)

2.2 MonkeyPox-Free Equilibrium (MFE)

The Monkeypox-Free equilibrium (MFE), denoted as E0 =
{
S0
H , E0

H , I0H , C0
H , V 0

H , R0
H , S0

M , E0
M , I0M

}
, repre-

sents the state where no disease exists within the population. In this equilibrium, all infected compartments
are zero. 

αH (1− ρ) + ν1VH − (EH ϕH + βH + ν2)SH = 0,

ϕHSH EH − (ηH + βH)EH = 0

ηHEH − (γ + δ +ϖ1 + βH) IH = 0

γ IH − (ξ +ϖ2 + βH)CH = 0

ραH + ν2SH + θRH − (ν1 + βH)VH = 0

δ IH − (θ + βH)RH = 0

αM − (EM ϕM + βM )SM = 0

ϕMSM EM − (ηM + βM )EM = 0

ηMEM − βM IM = 0

(2.22)

Therefore, the Monkeypox-Free equilibrium must satisfy this condition, as illustrated in Figure 3

E0 = (S0
H , E0

H , I0H , C0
H , V 0

H , R0
H , S0

M , E0
M , I0M )

=

(
αM

ϕM + βM
, , 0, 0, 0,

αH ((ϕH + βH) ρ+ ν2)

βH
2 + (ν1 + ν2 + ϕH)βH + ν1ϕH

, 0,
αH (−ρ βH + βH + ν1)

βH
2 + βHν1 + βHν2 + βHϕH + ν1ϕH

, 0, 0

)
(2.23)
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Figure 3: Graphical representation of MFE

3 Reproduction number

The next-generation matrix approach will be used to determine the reproduction number. The spectral
radius of the next-generation matrix FV −1 is the definition of the fundamental reproduction number in
accordance with this technique [15]. The fundamental reproduction number is represented by this value.

R0 = ρ(FV −1) (3.1)

We thus divide the differential equations into a new infection matrix F and a transfer matrix between
compartments, V, using the aforementioned equation (3.1).

F =



− ϕHαH(ρ βH−βH−ν1)
βH

2+βHν1+βHν2+βHϕH+ν1ϕH
0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 ϕMαM

ϕM+βM
0

0 0 0 0 0 0


(3.2)

and

V =



ηH + βH 0 0 0 0 0

−ηH γ + δ +ϖ1 + βH 0 0 0 0

0 −γ ξ +ϖ2 + βH 0 0 0

0 −δ 0 θ + βH 0 0

0 0 0 0 ηM + βM 0

0 0 0 0 −ηM βM


(3.3)
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As follows:

FV −1 =



− ϕHαH(ρ βH−βH−ν1)
(βH

2+βHν1+βHν2+βHϕH+ν1ϕH)(ηH+βH)
0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 ϕMαM

(ϕM+βM )(ηM+βM ) 0

0 0 0 0 0 0


(3.4)

The spectral radius can only be ascertained by computing the eigenvalues of FV −1. Using computation and
simplification, we get the eigenvalues that are as follows:

0

0

0

0

ϕMαM

(ϕM+βM )(ηM+βM )

αH(ν1−(ρ−1)βH)ϕH

(βH
2+(ν1+ν2+ϕH)βH+ν1ϕH)(ηH+βH)


(3.5)

therefore

R0 = max

[
ϕMαM

(ϕM + βM ) (ηM + βM )
,

αH (ν1 − (ρ− 1)βH)ϕH(
βH

2 + (ν1 + ν2 + ϕH)βH + ν1ϕH

)
(ηH + βH)

]
(3.6)

Hence,
R0 = max

[
RM

0 , RH
0

]
(3.7)

We examine the following scenarios:

• ϕMαM > (ϕM + βM ) (ηM + βM ) and αH (ν1 − (ρ− 1)βH)ϕH <
(
βH

2 + (ν1 + ν2 + ϕH)βH + ν1ϕH

)
(ηH + βH)

then R0 > 1

• ϕMαM < (ϕM + βM ) (ηM + βM ) and αH (ν1 − (ρ− 1)βH)ϕH >
(
βH

2 + (ν1 + ν2 + ϕH)βH + ν1ϕH

)
(ηH + βH)

then R0 > 1.

• ϕMαM > (ϕM + βM ) (ηM + βM ) and αH (ν1 − (ρ− 1)βH)ϕH <
(
βH

2 + (ν1 + ν2 + ϕH)βH + ν1ϕH

)
(ηH + βH)

then R0 > 1

• ϕMαM < (ϕM + βM ) (ηM + βM ) and αH (ν1 − (ρ− 1)βH)ϕH <
(
βH

2 + (ν1 + ν2 + ϕH)βH + ν1ϕH

)
(ηH + βH)

then R0 > 1
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Figure 4: Behavior of R0 between αM and βM
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3.1 Analysis of the basic effective reproduction number (R0)

To conduct a sensitivity analysis of the basic effective reproduction R0, we assess how variations in each
parameter influence R0 [16]. This can be achieved by using the normalized forward sensitivity index, which
quantifies the relative change in R0 in response to a relative change in a given parameter. The sensitivity
index of R0with respect to a parameter Γ is expressed as:

∂R0

∂Γ
× Γ

R0
(3.8)
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Next, let’s calculate the sensitivity indices for each parameter of rodents.

∂R0

∂ϕM
× ϕM

R0
=

βM

ϕM + βM
> 0

∂R0

∂αM
× αM

R0
= 1 > 0

∂R0

∂βM
× βM

R0
= − βM (ηM + 2βM + ϕM )

(ηM + βM ) (ϕM + βM )
< 0

∂R0

∂ηM
× ηM

R0
= − ηM

ηM + βM
< 0

(3.9)
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Figure 9: The Sensitivity Indices of rodents

Now, let’s calculate the sensitivity indices for each parameter of humans.

∂R0

∂αH
× αH

R0
= 1 > 0

∂R0

∂βH
× βH

R0
> 0

∂R0

∂ϕH
× ϕH

R0
=

βH (βH + ν1 + ν2)

βH
2 + (ν1 + ν2 + ϕH)βH + ν1ϕH

> 0

∂R0

∂ν2
× ν2

R0
= − βHν2

βH
2 + (ν1 + ν2 + ϕH)βH + ν1ϕH

< 0

∂R0

∂ν1
× ν1

R0
= − ν1βH (ρ βH + ρ ϕH + ν2)(

βH
2 + (ν1 + ν2 + ϕH)βH + ν1ϕH

)
((ρ− 1)βH − ν1)

< 0

∂R0

∂ρ
× ρ

R0
=

ρ βH

(ρ− 1)βH − ν1
> 0

(3.10)
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Figure 10: Sensitivity indices of humans

3.2 Local Stability of MonkeyPox-Free Equilibrium (MFE)

Theorem 3.1. The Monkeypox-free equilibrium (MFE) is locally asymptotically stable when R0 < 1 and
unstable when R0 > 1.

Proof. To assess the stability of the disease-free equilibrium, we calculate the Jacobian matrix of the system
at the MFE and perform a linear stability analysis. This involves computing the eigenvalues, and the signs
of these eigenvalues are used to determine stability [17]. We obtain the following by evaluating the Jacobian
matrix at the MonkeyPox-Free Equilibrium (MFE), we obtain the following expression:

JE =



−βH − ν2 ν1 j1,3 0 0 0 0 0 0

ν2 −ν1 − βH 0 0 0 θ 0 0 0

0 0 J3,3 0 0 0 0 0 0

0 0 ηH −γ − δ −ϖ1 − βH 0 0 0 0 0

0 0 0 γ −ξ −ϖ2 − βH 0 0 0 0

0 0 0 δ 0 −θ − βH 0 0 0

0 0 0 0 0 0 −βM − ϕMαM

ϕM+βM
0

0 0 0 0 0 0 0 ϕMαM

ϕM+βM
− βM − ηM 0

0 0 0 0 0 0 0 ηM −βM


(3.11)

j1,3 =
ϕHαH (ρ βH − βH − ν1)

βH
2 + βHν1 + βHν2 + βHϕH + ν1ϕH

j3,3 =
ϕHαH (ρ βH − βH − ν1)

βH
2 + βHν1 + βHν2 + βHϕH + ν1ϕH

− βH − ηH

We now calculate the eigenvalues and the characteristic polynomial, expressed as |JE−λI|, where I represents
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an 9× 9 identity matrix. The resulting eigenvalues, denoted by λ, are obtained as follows:

λ1 = −βH

λ2 = −βH − ν1 − ν2

λ3 =
αMϕM − βM

2 − βMηM − βMϕM − ηMϕM

ϕM + βM

λ4 = −ξ −ϖ2 − βH

λ5 = −θ − βH

λ6 =
−βH

3 + (−ν1 − ν2 − ηH − ϕH)βH
2 + ((−ν1 − ηH + (−ρ+ 1)αH)ϕH − ηH (ν1 + ν2))βH − ν1ϕH (ηH − αH)

βH
2 + (ν1 + ν2 + ϕH)βH + ν1ϕH

λ7 = −γ − δ −ϖ1 − βH

λ8 = −βM

λ9 = −βM

(3.12)

3.3 Global Stability monkey-pox Free Equilibrium Point

Lemma 3.2. If R0 < 1 (l.a.s.) , then the fixed point E0 =
(
X0, 0

)
system of equations (2.20) is globally

asymptotic stable (g.a.s.) if condition (Z1) and (Z2) conditions are satisfied [18].

Theorem 3.3. The model (2.20) is globally asymptotically stable at DEFP E0 if R0 < 1.

Proof. Firstly, to satisfy condition (Z1), the model (2.20) are rewrite by setting, TH = (SH , VH , SM ) and,
GH = (EH , IH , CH , RH , EM , IM ). Then, disease-free equilibrium point is given by the fixed point,

E0 =
(
X0, 0

)
=

(
αM

ϕM+βM
, αH((ϕH+βH)ρ+ν2)
βH

2+(ν1+ν2+ϕH)βH+ν1ϕH
, αH(−ρ βH+βH+ν1)
βH

2+βHν1+βHν2+βHϕH+ν1ϕH

)
, the system dTH

dt = F (TH , 0)

becomes,

dS∗
H

dt
= αH(1− ρ) + ν1VH − (ν2 + ϕH + βH)SH ,

dV ∗
H

dt
= αHρ+ ν2SH − (βH + ν1)VH ,

dS∗
M

dt
= αM − (ϕM + βM )SM

(3.13)

By solving Eq. (3.13), the equation has a unique equilibrium point,

(S∗
H , V ∗

H , S∗
M ) =

(
αM

ϕM + βM
,

αH ((ϕH + βH) ρ+ ν2)

βH
2 + (ν1 + ν2 + ϕH)βH + ν1ϕH

,
αH (−ρ βH + βH + ν1)

βH
2 + βHν1 + βHν2 + βHϕH + ν1ϕH

)
,

(3.14)
hence X0 is globally asymptotically stable. So we can say the condition (Z1) is fulfilled. Now, to satisfy
the second condition (Z2). H(TH , GH) = PHGN − Ĥ(TH , GH), and Ĥ(TH , GH) ≥ 0, For that, system of
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equations (2.20). We have,

GN =



S∗
H ϕH − βH − ηH 0 0 0 0 0

ηH −γ − δ −ϖ1 − βH 0 0 0 0

0 γ −ξ −ϖ2 − βH 0 0 0

0 δ 0 −θ − βH 0 0

0 0 0 0 S∗
M ϕM − βM − ηM 0

0 0 0 0 ηM −βM


(3.15)

H(TH , GH) =



ϕHSH EH − (ηH + βH)EE

ηHEH − (γ + δ +ϖ1 + βH) IH

γ IH − (ξ +ϖ2 + βH)CH

δ IH − (θ + βH)RR

SM ϕMEM − (ηM + βM )EM

EM ηM − βM IM


, (3.16)

Ĥ(TH , GH) = PHGN −H(TH , GH) =



EH ϕH (S∗
H − SH)

0

0

0

EM ϕM (S∗
E − SE)

0


, (3.17)

this shows that, Ĥ(TH , GH) ≥ 0, where GN represent an M matrix, it contains a non-negative off-diagonal
element. Therefore, the conditions (Z1) and (Z2) are proved, so by Lemma 3.2 satisfied. Here is the
complete proof.

4 Model result and discussion

With the parameter values listed in Table 2, MATLAB R2018a was used to run and analyze the suggested
model. We ran a number of simulations to examine the significance of various factors on the disease’s
systemic outcomes.We showed the graphical view analysis of the proposed fractional system of monkeypox
in Figures 11 and 12. We observe that applying vaccination VH in the human leads to both an increase in the
recovered human RH rate and a decrease in the number of susceptible individuals SH . This demonstrates that
vaccination plays a crucial role in controlling the spread of the monkeypox virus. By reducing susceptibility
and boosting recovery, vaccination can significantly limit disease transmission and improve public health
outcomes shown in Figure (11-12).
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(f) Recovered Humans Over Time

Figure 11: Human Compartments Over Time at classical derivative
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(a) Susceptible Rodents Over Time
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Figure 12: Rodent Compartments Over Time at classical derivative

4.1 Fractional-order model (2.20)

The approximate solutions obtained by numerically solving the system of differential equations (2.20) are
depicted in the graphs below. The memory effects are shown in these figures for various values of σ. Memory
effects cause hidden phenomena to surface when fractional-order derivatives are used; these phenomena are
not seen in models with σ = 1. The benefit of the fractional-order model is that, as the value of σ approaches
1, its solutions (2.20) converge to those of the classical model (2.10).
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Figure 13: Fractional dynamics of susceptible individuals in model (2.20) for σ = 0.2, 0.4, 0.6, 0.8, 1.
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Figure 14: Fractional dynamics of exposed individuals in model (2.20) for σ = 0.2, 0.4, 0.6, 0.8, 1
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Figure 15: Fractional dynamics of infectious individuals in model (2.20) for σ = 0.2, 0.4, 0.6, 0.8, 1
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Figure 16: Fractional dynamics of clinically ill individuals in model (2.20) for σ = 0.2, 0.4, 0.6, 0.8, 1
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Figure 17: Fractional dynamics of vaccinated individuals in model (2.20) for σ = 0.2, 0.4, 0.6, 0.8, 1
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Figure 18: Fractional dynamics of recovered individuals in model (2.20) for σ = 0.2, 0.4, 0.6, 0.8, 1
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Figure 19: Fractional dynamics of susceptible rodents in model (2.20) for σ = 0.2, 0.4, 0.6, 0.8, 1.
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Figure 20: Fractional dynamics of exposed rodents in model (2.20) for σ = 0.2, 0.4, 0.6, 0.8, 1.
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Figure 21: Fractional dynamics of infected rodents in model (2.20) for σ = 0.2, 0.4, 0.6, 0.8, 1.

Parameter Description Value
αH Human recruitment rate 80
ρ percentage of vaccinated immigrants 0.02
ν1 Transition rate to vaccinated 0.2
ν2 Transition rate from susceptible to vaccinated 0.7
ϕH Transmission rate in humans 0.2
βH Natural death rate in humans 0.04
ηH Progression from exposed to infectious in humans 0.5
γ Recovery rate for infectious individuals 0.2
δ Death rate for infectious individuals 0.1
ϖ1 Mortality due to infection 0.05
ϖ2 Mortality in clinical cases 0.02
θ Transition from recovered to vaccinated 0.8
ξ Natural death rate in clinical individuals 0.06
αM Rodent recruitment rate 25
ϕM Transmission rate in rodents 0.3
ηM Progression from exposed to infectious in rodents 0.45
βM Death rate in rodents 0.05

Table 1: Model parameters and their values

5 Conclusion

In this work, we introduced a novel deterministic mathematical model to study the transmission dynamics
of the monkeypox virus, distinguishing between human and rodent populations. Our analysis demonstrates
that the disease-free equilibrium is locally asymptotically stable when the basic reproduction number R0 < 1,
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but becomes unstable when R0 > 1, highlighting the importance of controlling this threshold. Through nu-
merical simulations and sensitivity analysis, we explored the impact of key parameters on the spread of
monkeypox, identifying critical factors such as human contact rate, rodent interaction, and the fraction of
vaccinated immigrants. The findings emphasize that strengthening vaccination and isolation measures can
significantly reduce the reproduction rate of the virus, potentially leading to its eradication. The model’s
stability analysis, in conjunction with its numerical simulations, offers valuable insights into the control
strategies required to manage monkeypox outbreaks effectively. This research contributes to our under-
standing of the virus’s transmission mechanisms and provides practical recommendations for public health
interventions aimed at preventing and controlling future outbreaks.
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