

Derivation and Applications of a Formula for Balancing Numbers Using Range Endpoints

By

Sakibur Rahman Utshow

Abstract

This paper presents a mathematical derivation of a formula to determine the balancing

number x within a given range [A, L]. A balancing number is a unique integer in the range that

equally partitions the sum of integers on both sides.

The method relies solely on the starting A and ending L numbers, eliminating the need for a

balancer. This efficient approach is validated with examples and visualizations, showcasing its

accuracy and potential applications in resource allocation and optimization.

Keywords: Balancing Numbers, Number Theory, Optimization, Math, Data Visualization,

Diophantine Equations

Introduction

Balancing numbers is a fascinating concept in number theory. These numbers satisfy the

condition where the sum of integers to their left equals the sum of integers to their right within a

specific range. Traditional methods to identify balancing numbers often involve a balancer.

This paper derives a formula to compute balancing numbers directly using only the starting

number A and ending number L of the range. This approach not only simplifies the computation

but also is more productive, enabling its application to a wide variety of mathematical and

practical contexts.

Problem Statement

Given a range of integers from A to L, find the balancing number x such that:

The sum of integers from A to (x-1) equals the sum of integers from (x+1) to L.

Derivation

1. Formula for the Sum of Integers in a Range

 The sum of integers from p to q is given by:

2. Left-Hand Side (LHS)

 The sum of integers from A to x-1 is:

Simplify:

3. Right-Hand Side (RHS)

 The sum of integers from x+1 to L is:

Simplify:

4. Equating LHS and RHS

Multiply both sides by 2:

5. Expanding Both Sides

 Expand the left-hand side:

Expand the right-hand side:

6. Combine Like Terms

 Rearranging the terms, we get:

7. Solve for x

 Divide by 2 and take the square root:

Example

Find the balancing number for the range [2,15]:

Using the formula:

The balancing number is 11.

Find the balancing number for the range [1,8]:

Using the formula:

The balancing number is 6.

When dealing with non-integer balancing numbers, the idea remains the same as with integer

cases. For example, consider the interval from 5 to 15. Here, the balancing number is

approximately 11.40175425.

This means that if you sum all the numbers from 5 up to (but not including) 11.40175425,

and then sum all the numbers from just above 11.40175425 up to 15, both sums turn out to be

equal—approximately 121.401754

The calculation is precise up to five decimal places.Same goes for 10.40175425 and

12.40175425 If (n - 1) is considered.

Methodology

A Python program Is created where It finds A and L numbers which satisfy the above rules for

finding out the range for A and L.

import math

def is_square(n):

 """

 Checks if a number is a perfect square.

 Args:

 n: The number to check.

 Returns:

 True if n is a perfect square, False otherwise.

 """

 root = math.sqrt(n)

 return root == int(root)

def find_a_and_l():

 """

 Finds values for a and l that satisfy the given conditions.

 Returns:

 A list of tuples containing the values of a and l.

 """

 results = []

 for a in range(1, 2): # change range

 for l in range(a + 3, 10000000000): # Ensure l > a and l - a >= 3

 expression_value = (a * (a - 1) + l * (l + 1)) // 2

 if is_square(expression_value):

 results.append((a, l))

 return results

if __name__ == "__main__":

 results = find_a_and_l()

 if results:

 print(f"Found {len(results)} pairs of a and l:")

 for a, l in results:

 print(f"a = {a}, l = {l}")

 else:

 print("No values of a and l found that satisfy the conditions.")

The above code gives values of L up to 10,000,000,000 which fulfills all the conditions for

Balancing Numbers from which the values can be plugged [those values of L] into the equation

for balancing numbers and It will get the balancing numbers for that specific L range. From

which a simple python code can be created where It will just plug in those L numbers and get me

the solution as A values dont matter for ranges starting from 1.

By doing all this It found 5681 L numbers. Plugging in the L numbers In the equation will give

5681 balancing numbers(Except 1). From those 5681 It will make a line chart based on those

balancing numbers the code for this is given below:

import math

import matplotlib.pyplot as plt

def calculate_x():

 """

 Calculates the value of 'x' for given 'l' values and plots the results.

 Args:

 None (data is hardcoded within the function)

 Returns:

 None (the function creates and displays the plot)

 """

 # Input data: copy-paste the values here

 input_data = """

a = 1, l = 8

a = 1, l = 49

a = 1, l = 288

a = 1, l = 1681

a = 1, l = 9800

a = 1, l = 57121

a = 1, l = 332928

Did Not paste all the data as there are more than 5680 data in this input data

 """

 # Split the pasted data into lines

 lines = input_data.strip().split("\n")

 # Extract 'l' values and calculate 'x'

 l_values = []

 x_values = []

 for line in lines:

 l = int(line.split(", l =")[1].strip())

 x = math.sqrt((l * (l + 1)) / 2)

 l_values.append(l)

 x_values.append(x)

 # Create the plot

 plt.figure(figsize=(10, 6))

 plt.plot(range(1, len(l_values) + 1), l_values, label='l', color='blue')

 plt.plot(range(1, len(l_values) + 1), x_values, label='x', color='red')

 plt.xlabel('Set # (nth Balancing Number)')

 plt.ylabel('Values')

 plt.title('l Value and Balancing Number')

 plt.legend()

 plt.grid(True)

 plt.show()

Run the function

calculate_x()

From these two python programs the Balancing Number Graphs and Scatter Plots can be created.

Charts & Scatter Plots

Fig [1]

Fig [1] shows the line chart for the 5681th balancing number in the x axis and shows that the L

value slope is steeper than that of balancing numbers value slopes.

Fig [2]

Fig [2] shows that as the value of L increases, both the balancing number and the Ls value

increase; however, the Ls value increases at a steeper rate compared to the balancing number.

Fig [3]

Fig [3] is a scatter plot illustrating the relationship between A and L. For each value of A, there

are multiple corresponding L values; therefore, a scatter plot is used to visualize data for a range

where both A and L extend up to 10,000.

1. Triangular Distribution:

The overall shape of the scatter plot resembles a filled triangle. The density of points is higher

near the origin and decreases as you move towards the upper-right corner.

This pattern suggests a relationship where the increase in "A Values" correlates with a more

dispersed set of "L Values".

2. Distinct Linear Bands:

Similar to the previous plot, several diagonal bands are visible, each representing distinct linear

relationships. The bands become denser towards the left (lower "A Values") and sparser as "A

Values" increase.

This could indicate the presence of different linear trends or formulaic relationships within

subsets of the data.

3. Dense Lower Bound:

The bottom edge of the triangle, close to the x-axis, is very dense, suggesting that for many

values of "A," there are corresponding "L Values" close to zero or increasing gradually.

This could indicate that lower values of "A" often correspond to lower "L Values".

Fig [4]

Fig [4] scatter plot doesn't show a right triangle shape as the L range is greater than a range.

The x-axis ("A Values") ranges from 0 to 1000, and the y-axis ("L Values") ranges from 0 to

10000. This shows a broad range of data, suggesting varied values for both variables

The scatter plot shows the relationship between two variables, labeled as "A Values" on the x-

axis and "L Values" on the y-axis. Here are some key observations:

Clustered Points with Diagonal Patterns:

The plot exhibits several distinct diagonal patterns, each representing a linear relationship

between the two variables. These lines suggest that there might be multiple linear relationships

or groups within the data.

Increasing Trend:

In general, as "A Values" increase, "L Values" also tend to increase. This indicates a positive

correlation between the two variables.

Spread of Data:

The data points are scattered but follow clear lines, which may imply discrete sets of

relationships or categorizations within the dataset.

Dense Concentration Along Lines:

There are several thick, bold lines where data points are densely packed, indicating that certain

specific relationships or values of "A" and "L" are more common or occur frequently.

Applications of Relation Between L And Balancing Number:

Fig [5]

● Predictive Maintenance:

○ Just as the fuel consumption graph illustrates the accumulation of fuel usage over

time, our graph can be used to model the accumulation of "wear and tear" in a

machine.

○ By representing the number of operating hours as 'L' and the balancing number as

the accumulated wear and tear, we can predict when the machine might require

maintenance or replacement. This proactive approach can help prevent costly

breakdowns and ensure optimal equipment performance.

● Resource Management:

○ Similar to how the fuel consumption graph tracks resource usage (fuel), our graph

can model the consumption of other resources such as water or energy.

○ By representing time as 'L' and the balancing number as the resource

consumption, we can predict future usage patterns.

○ This information is valuable for resource planning, conservation efforts, and

optimizing resource allocation.

Fig [6]

Principal Component Analysis (PCA) is a statistical technique used to reduce the dimensionality

of a dataset while preserving the most important information. It achieves this by identifying

linear combinations of the original variables, known as principal components, that capture the

maximum variance in the data.

While this Papers graph directly depicts the relationship between 'L' values and balancing

numbers, its overall shape and the increasing trend of both variables bear some resemblance to

the outcomes of a PCA analysis. In PCA, we observe how much of the total variance in the data

can be explained by each successive principal component. Similarly, our graph shows how both

'L' values and balancing numbers increase, suggesting a growing cumulative effect or variance.

Fig [7]

"A Game-Theoretic Approach for Enhancing Security and Data Trustworthiness in IoT

Applications". The paper investigates security and data trustworthiness challenges in Internet of

Things (IoT) networks. It employs game theory to model interactions among devices and identify

strategies for mitigating threats, such as malicious attacks and data manipulation. By analyzing

these interactions, the paper aims to enhance the security and reliability of data exchange within

IoT systems.

Applications of the Graph:

● Resource Allocation in IoT Networks: The graph demonstrates a pattern of exponential

growth, reminiscent of resource consumption in IoT networks. As the number of devices

('L' values) in a network increases, the demand for resources such as bandwidth and

energy (represented by the balancing number) also rises significantly. This visual

representation highlights the critical need for efficient resource allocation strategies in

IoT systems to ensure optimal performance and avoid bottlenecks.

● Security and Trust in IoT Systems: The graph can be interpreted as a model for the

increasing security risks associated with growing IoT networks. As the number of devices

('L' values) in the network expands, the complexity of managing security and ensuring

data trustworthiness (represented by the balancing number) increases exponentially. This

visualization underscores the importance of robust security measures and proactive threat

mitigation strategies in large-scale IoT deployments.

● Data Trustworthiness and Management: In the context of IoT, the graph can represent

the relationship between the number of data sources ('L' values) and the overall level of

data trustworthiness (represented by the balancing number). As the number of data

sources increases, ensuring data accuracy, reliability, and security becomes more

challenging. This visualization emphasizes the need for robust data validation,

verification, and trust management mechanisms in data-driven IoT applications.

These applications demonstrate how the insights gained from your graph can be valuable for

understanding and addressing critical challenges in the development and deployment of IoT

systems, including resource management, security, and data trustworthiness.

Applications for Higher Productive Starting Points:

Fig [8]

Fig [8] illustrates how different starting points can have more balancing numbers than the

starting point of L within a specific range of [A + 3, 1000000]. Fig [8] also demonstrates that

starting points such as 44 and 51 yield 54 balancing numbers, compared to only 8 balancing

numbers when starting from 1—resulting in a 675% (54/8) improvement in efficiency.

If the range for the starting number is increased from 1 to 1000 and the ending number has a

range of [A + 3, 100,000], the program can more efficiently search for productive starting points

for balancing numbers.

for example, below is a bar chart for the same range given, as mentioned above:

Fig [9]

Here 601 has 66 balancing numbers within a shorter range and 1 has 6 balancing numbers.this

improves the efficiency to 1100% (66/6). This way the equation can find more productive

starting points for finding balancing numbers within a short range. This information can be used

in various fields in real life. Given below are some applications:

Resource Allocation and Distribution

In systems where resources need to be distributed evenly, identifying productive starting points

can maximize efficiency.

Example: Distributing supplies from a warehouse to multiple locations. Starting distribution

from a productive point (one that balances supply and demand efficiently) minimizes travel time

and reduces resource wastage. For instance, if starting from warehouse #44 results in 13

balanced routes while others yield fewer, it’s optimal to begin there.

Load Balancing in Networks

Productive starting points can improve load balancing in computing or communication networks

by distributing tasks more evenly among nodes.

Example: In a data center with interconnected servers, starting load distribution at a productive

node reduces the risk of overloading some servers while under-utilizing others. This leads to

faster processing and prevents system bottlenecks.

Cryptography

Application: Balancing numbers can be utilized in cryptographic algorithms to enhance security.

Example: In the paper "Balancing and Lucas-Balancing Numbers and their Application to

Cryptography," researchers explore how these numbers can be applied to develop cryptographic

schemes.

How It Helps: Cryptographic schemes rely on unique, hard-to-predict keys. Having more

balancing numbers from different starting points increases the available pool of secure keys or

sequences. This diversity makes cryptographic systems more robust against attacks.

Coding Theory

Application: Balancing numbers are used in coding theory to construct error-detecting and error-

correcting codes.

Example: The study "Coding Theory Based on Balancing Polynomials" discusses how balancing

numbers contribute to the development of codes that can detect and correct errors in data

transmission.

How It Helps: Error-detecting and error-correcting codes often depend on unique sequences with

specific properties. More balancing numbers across various ranges can allow for more flexible

and efficient code constructions.

Image Scrambling

Application: Balancing numbers are applied in digital image processing for scrambling methods

to secure image data.

Example: The article "A Digital Scrambling Method Based on Balancing Numbers" presents a

new approach to image scrambling using balancing transformations, enhancing the security of

image data.

How It Helps: Image scrambling techniques benefit from unique and varied transformations.

Using balancing numbers from different starting points introduces more ways to scramble data,

making it harder for attackers to reverse-engineer the scrambling process.

Solving Diophantine Equations

Application: Balancing numbers assist in finding integer solutions to certain types of

Diophantine equations.

Example: The paper "Balancing Numbers and Application" elaborates on the role of balancing

numbers in solving these equations, contributing to number theory research.

How It Helps: Finding integer solutions to Diophantine equations often involves searching

through specific number sets. Having balancing numbers from various starting points expands

the solution space, increasing the chances of finding valid solutions.

Discussion

The research demonstrates how the derived formula can identify productive starting points to

maximize the number of balancing numbers within a range, leading to improved efficiency in

various fields like logistics, cryptography, and data distribution.

Key contributions:

1. Mathematical Derivation:

○ The paper provides a step-by-step derivation of the balancing number formula.

2. Visualization:

○ Graphs, including scatter plots, line charts, and bar charts, illustrate the behavior

of x for different ranges of A and L.

3. Applications:

○ Real-world use cases include resource allocation, network optimization, and

predictive maintenance, among others.

Conclusion

This paper presents an efficient formula for computing balancing numbers using only the

starting and ending numbers of a range. The derived formula,

eliminates balancer computations, making it a valuable tool for finding large nth balancing

numbers.Showing how this equation has a way to find more productive starting numbers which

has more balancing numbers and the graph for L and balancing numbers shows some real world

application for predicting future results.

References

● Tsoumpris, Charalampos, and Gerasimos Theotokatos. " A Health-Aware Energy

Management Strategy for Autonomous Ships Power Plants Operation." Transportation

Research Procedia (2022): https://doi.org/10.1016/j.trpro.2023.11.716.

● Parhizkar, Tarannom, Elham Rafi eipour, and Aram Parhizkar. " Principal Component

Analysis (PCA): Prognostics Health Monitoring of Complex Systems using Principal

Component Analysis based Feature Reduction." Journal of Cleaner Production, March

2021. https://doi.org/10.1016/j.jclepro.2020.123866.

● Abdalzaher, Mohamed S., and Osamu Muta. "A Game-Theoretic Approach for

Enhancing Security and Data Trustworthiness in IoT Applications."IEEE Internet of

Things Journal November 2020. https://doi.org/10.1109/jiot.2020.2996671

● Swain, Sujata, Chidananda Pratihary, and Prasanta Kumar Ray. "Balancing and Lucas-

Balancing Numbers and Their Application to Cryptography." ResearchGate, 2018.

https://doi.org/10.18495/comengapp.v5i1.46.

● Prasad, Bandhu. "Coding Theory Based on Balancing Polynomials." Communications

and Computing, 2021. https://doi.org/10.2478/candc-2021-0017.

https://doi.org/10.1016/j.trpro.2023.11.716
https://doi.org/10.1016/j.jclepro.2020.123866
https://doi.org/10.1109/jiot.2020.2996671
https://doi.org/10.18495/comengapp.v5i1.46
https://doi.org/10.2478/candc-2021-0017

● Swain, S., Pratihary, C., & Ray, P. K. (2016). Balancing and Lucas‐balancing numbers

and their application to cryptography. Computer Engineering and Applications.

https://doi.org/10.18495/comengapp.v5i1.46

https://doi.org/10.18495/comengapp.v5i1.46
https://doi.org/10.18495/comengapp.v5i1.46
https://doi.org/10.18495/comengapp.v5i1.46

	Introduction
	Problem Statement
	Derivation
	Example
	Conclusion

